Facial beauty prediction fusing transfer learning and broad learning system

نویسندگان

چکیده

Abstract Facial beauty prediction (FBP) is an important and challenging problem in the fields of computer vision machine learning. Not only it easily prone to overfitting due lack large-scale effective data, but also difficult quickly build robust facial evaluation models because variability appearance complexity human perception. Transfer Learning can be able reduce dependence on large amounts data as well avoid problems. Broad learning system (BLS) capable completing building training. For this purpose, was fused with BLS for FBP paper. Firstly, a feature extractor constructed by way CNNs based transfer extraction, which EfficientNets are used paper, features extracted transferred FBP, called E-BLS. Secondly, basis E-BLS, connection layer designed connect BLS, ER-BLS. Finally, experimental results show that, compared previous methods existed, accuracy improved E-BLS ER-BLS, demonstrating effectiveness superiority method presented, widely pattern recognition, object detection image classification.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusing Social Networks with Deep Learning for Volunteerism Tendency Prediction

Social networks contain a wealth of useful information. In this paper, we study a challenging task for integrating users’ information from multiple heterogeneous social networks to gain a comprehensive understanding of users’ interests and behaviors. Although much effort has been spent to study this problem, most existing approaches adopt linear models to fuse multiple sources. Such approaches ...

متن کامل

Fusing Social Networks with Deep Learning for Volunteerism Tendency Prediction

Zobrist Hashing: An Efficient Work Distribution Method for Parallel Best-First Search Yuu Jinnai, Alex Fukunaga VIS: Text and Vision Oral Presentations 1326 SentiCap: Generating Image Descriptions with Sentiments Alexander Patrick Mathews, Lexing Xie, Xuming He 1950 Reading Scene Text in Deep Convolutional Sequences Pan He, Weilin Huang, Yu Qiao, Chen Change Loy, Xiaoou Tang 1247 Creating Image...

متن کامل

Seizure Prediction by Graph Mining, Transfer Learning, and Transformation Learning

We present in this study a novel approach to predicting EEG epileptic seizures: we accurately model and predict non-ictal cortical activity and use prediction errors as parameters that significantly distinguish ictal from non-ictal activity. We suppress seizure-related activity by modeling EEG signal acquisition as a cocktail party problem and obtaining seizure-related activity using Independen...

متن کامل

investigating the effect of motivation and attitude towards learning english, learning style preferences and gender on iranian efl learners proficiency

تحقیق حاضر به منظور بررسی تاثیر انگیزه و نگرش نسبت به یادگیری زبان انگلیسی، ترجیحات سبک یادگیری و جنسیت بر بسندگی فراگیران ایرانی زبان انگلیسی انجام شد. برای این منظور، 154 فراگیر ایرانی زبان انگلیسی در این تحقیق شرکت کردند. سه ابزار جمع آوری داده ها شامل آزمون تعیین سطح بسندگی زبان انگلیسی آکسفورد، پرسشنامه ترجیحات سبک یادگیری براچ و پرسشنامه انگیزه و نگرش نسبت به یادگیری زبان انگلیسی به م...

the relationship between using language learning strategies, learners’ optimism, educational status, duration of learning and demotivation

with the growth of more humanistic approaches towards teaching foreign languages, more emphasis has been put on learners’ feelings, emotions and individual differences. one of the issues in teaching and learning english as a foreign language is demotivation. the purpose of this study was to investigate the relationship between the components of language learning strategies, optimism, duration o...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Soft Computing

سال: 2022

ISSN: ['1433-7479', '1432-7643']

DOI: https://doi.org/10.1007/s00500-022-07563-1